Analisis Periode Rotasi Matahari Berdasarkan Pergerakan Bintik Matahari AR 4207 pada Citra SolarHam Tanggal 1–8 September 2025

Authors

  • Rustaman Universitas Ahmad Dahlan
  • Rodika Utama Universitas Ahmad Dahlan

DOI:

https://doi.org/10.60041/jap.v4i1.333

Abstract

This study aims to determine the rotational period of the Sun by analyzing the motion of a sunspot across the solar disk. The active sunspot region AR 4207 was examined using solar continuum images acquired on 1 and 8 September 2025. The position of the sunspot on each date was projected onto a circular diagram with the central meridian as the reference axis in order to measure its angular displacement. The projected angles relative to the central meridian were found to be  on 1 September and  on 8 September, yielding a total displacement of  over a seven-day interval. By applying the relation , the solar rotation period was calculated to be  days. This result aligns with the typical synodic rotation period of the Sun at low latitudes. The findings demonstrate that sunspot tracking provides a simple and effective method for estimating the Sun’s rotation, making it well suited for educational and observational activities in astronomy.

References

Babcock, H. W. (1961).The Topology of the Sun’s Magnetic Field and the 22-Year Cycle. The Astrophysical Journal, 133. https://doi.org/10.1086/147060

Balthasar, H. (2007). Rotational Periodicities in Sunspot Relative Numbers. Astronomy & Astrophysics, 471(1), 281–287. https://doi.org/10.1051/0004-6361:20077475

Beck, J. G. (2000). A Comparison of Differential Rotation Measurements. Solar Physics, 191, 47–70. https://doi.org/10.1023/A:1005226402796

Brown, D., & Walker, A. (2021). A Semi-Automatic Method to Measure the Rotation of a Sunspot. Solar Physics, 296(48). https://doi.org/10.1007/s11207-021-01787-4

Clark, D. H., Yallop, B. D., Richard, S., Emerson, B., & Rudd, P. J. (1979). Differential Rotation depends on Solar Activity. Nature, 280, 299-300. https://doi.org/10.1038/280299a0

Hathaway, D. H. (2015). The Solar Cycle. Living Reviews in Solar Physics, 12(4). https://doi.org/10.1007/lrsp-2015-4

Jha, B. K., Priyadarshi, A., Mandal, S., Chatterjee, S., & Banerjee, D. (2021). Measurements of Solar Differential Rotation Using the Century Long Kodaikanal Sunspot Data. Solar Physics, 296, 25.

Li, K. J., Shi, X. J., Xie, J. L., Gao, P. X., Liang, H. F., Zhan, L. S., & Feng, W. (2013). Solar-Cycle-Related Variation of Solar Differential Rotation. Monthly Notices of the Royal Astronomical Society, 433(1), 521–527. https://doi.org/10.1093/mnras/stt744

McCann, A. D., Cadavid, A. C., Parthibhan, S., & Choudhary, D. P. (2024). Differential Rotation Rates of Recurrent Sunspot Groups Lasting Two or Three Passages in the Debrecen Photoheliographic Data Catalogue. Solar Physics, 299, 138.

Modzelewska, R., & Alania, M. V. (2018). Quasi-Periodic Changes in the 3D Solar Anisotropy of Galactic Cosmic Rays for 1965–2014. Astronomy & Astrophysics, 609, A32. https://doi.org/10.1051/0004-6361/201731697

NASA. (2013). Solar Rotation Varies by Latitude. National Aeronautics and Space Administration. https://www.nasa.gov/image-article/solar-rotation-varies-by-latitude/

Petrovay, K. (2010). Solar Cycle Prediction. Living Reviews in Solar Physics, 7(6). https://doi.org/10.12942/lrsp-2010-6

Poljančić Beljan, I., Jurdana-Šepić, R., Brajša, R., Sudar, D., Ruždjak, D., Hržina, D., Pötzi, W., Hanslmeier, A., Veronig, A., Skokić, I., & Wöhl, H. (2017). Solar Differential Rotation in the Period 1964–2016 Determined by the Kanzelhöhe Data set. Astronomy & Astrophysics, 606, A72. https://doi.org/10.1051/0004-6361/201731047

Rieutord, M., & Rincon, F. (2010). The Sun’s Supergranulation. Living Reviews in Solar Physics, 7(2). https://doi.org/10.12942/lrsp-2010-2

Schou, J., Scherrer, P. H., Bush, R. I., Wachter, R., Couvidat, S., Rabello-Soares, M. C., & Tarbell, T. D. (2012). Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Physics, 275, 229–259. https://doi.org/10.1007/s11207-011-9842-2

Silta, Y. N., & Pramudya, Y. (2017). Pengembangan Alat Peraga Bintik Matahari Menggunakan LED Berbasis Arduino. SPEKTRA: Jurnal Fisika dan Aplikasinya, 2(3), 195–202. https://doi.org/10.21009/SPEKTRA.023.05

Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., & Toomre, J. (2003). The Internal Rotation of the Sun. Annual Review of Astronomy and Astrophysics, 41, 599–643. https://doi.org/10.1146/annurev.astro.41.011802.094848

Widodo, N., Muhamad, J., Pangestu, A. D., et al. (2025). Differential Rotation of Long-Lived Sunspot Groups in Solar Cycles 22–24 Determined by Watukosek Solar Observatory Data. Solar Physics, 300, 107.

Published

2026-02-04

How to Cite

Rustaman, & Utama, R. (2026). Analisis Periode Rotasi Matahari Berdasarkan Pergerakan Bintik Matahari AR 4207 pada Citra SolarHam Tanggal 1–8 September 2025. JURNAL ARMADA PENDIDIKAN, 4(1). https://doi.org/10.60041/jap.v4i1.333